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elaboration of the D. A. model. Such models have been 
proposed by Lax17 and by Cowley,7 but both appear 
to involve a considerable number of disposable pa­
rameters, and the problem of parameter determination 
still remains. 

17 M. Lax, Phys. Rev. Letters 1, 133 (1958); and Bull. Am. 
Phys. Soc. 4, 181 (1959). 

INTRODUCTION 

RECENT experimental studies on dilute concentra-
trations of manganese in copper have revealed 

several interesting and unusual phenomena. Measure­
ments of the magnetization as a function of tempera­
ture1-4 have shown a maximum in the low-temperature 
magnetic susceptibility. This maximum occurs at a 
temperature approximately proportional to the im­
purity concentrations and is found at 13 and 40°K for 
a 1.4 and 5.6 at.% Mn, respectively. The existence of 
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the susceptibility maximum was interpreted1 to be a 
gradual transition to antiferromagnetism as the tem­
perature is lowered; others5 suggested that the system 
may be composed of small ferromagnetic domains 
aligned antiferromagnetically. The high-temperature 
paramagnetic susceptibility obeys the Curie-Weiss law 
with positive temperature intercept characteristic of a 
ferromagnetic interaction and indicates that the mag­
netic moment of Mn is close to 5 Bohr magnetons. The 
system also exhibits remarkable low-temperature 
specific heat anomalies. Measurements by Zimmerman 
and Hoare6'7 have shown that the alloys exhibit a large 
excess specific heat compared with that of pure copper, 
the excess being independent of the Mn concentration 
and increasing linearly with temperature. To explain 

5 C. J. Gorter, G. J. Van Den Berg, and J. DeNobel, Can. J. 
Phys. 34, 1281 (1956). 

6 J. E. Zimmerman and F. E. Hoare, J. Chem. Solids 17, 52 
(1960). 

7 J. E. Zimmerman and F. E. Hoare, Bull. Am. Phys. Soc. 3, 
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The low-temperature specific heat and magnetic susceptibility for dilute concentrations of manganese in 
copper are studied, using the "statistical model" of Margenau and an expansion of the partition function 
in a power series of the concentration. An indirect "Ising model" interaction via the conduction electrons 
is assumed to exist between the magnetic impurities. To find a correction to the statistical model, the two-
particle correlation function between impurities is derived in the limit as the temperature approaches zero. 
It is shown that, in this limit, the system is composed of small clusters of spins that are strongly correlated 
to each other within a cluster, but various clusters are randomly oriented relative to each other. An im­
purity within one of these clusters finds itself in an "effective field" arising from the other spins within the 
cluster and from the random orientation of all spins outside the cluster. This field is a random variable 
and its probability distribution is easily obtained from the model. The detailed shape of the probability 
distribution of the field is given for a particular concentration. As the temperature is increased, the internal 
structure of the clusters is broken up and, at high temperatures, the system exhibits paramagnetic be­
havior. The theory predicts correctly the experimental low-temperature specific heat and magnetic suscepti­
bility of dilute Cu-Mn. 
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Zimmerman's results, Overhauser8 has postulated a new 
mechanism for antiferromagnetism involving the con­
cept of a static-spin density wave in the conduction 
band. Herring9 and Marshall10 suggested that Zimmer­
man's result can be explained by the well-known interac­
tion derived by Ruderman-Kittel,11 Kasuya,12 Yosida,13 

and Blandin and Friedel14 (in this paper called the 
Ruderman-Kittel interaction). Marshall10 has quali­
tatively explained the specific heat anomaly in terms of 
the Ruderman-Kittel interaction and has pointed out 
some objection to the Overhauser mechanism. 

In this paper, we show that the Ruderman-Kittel 
interaction, using the Ising model, accounts for the 
measured magnetic behavior of dilute Cu-Mn over the 
temperature range starting from T=0 up to and in­
cluding the high-temperature paramagnetic region. 

A brief outline of the paper is as follows. In Sec. 2 
we write the form of the partition function for a single 
spin in terms of the probability distribution of the 
effective field, P(H), seen by an impurity at some origin 
due to all other impurities distributed randomly over 
the volume of the crystal. To find the probability dis­
tribution we first neglect all spin correlations between 
the impurities. In this approximation, following Ander­
son,15 we show that the distribution function is a 
Lorenzian with width proportional to the concentration. 
Upon properly excluding large fields that come from 
impurities close to the origin, the distribution function 
becomes a Gaussian, again with width proportional to 
the concentration. In order to get a correction to P(H) 
we wish to obtain the two-particle spin correlation 
function (ju»/jy). With this in mind in Sec. 3, we expand 
the partition function diagramatically in a power 
series in the impurity concentration, sum the dia­
grams and perform averages over spins for low enough 
concentration such that no long-range order is sus­
tained in the solid. The partition function is evalu­
ated exactly up to and including the fourth virial co­
efficient (3rd power in the concentration), and approxi­
mately for higher virial coefficients. It is shown that in 
a certain approximation the two-particle correlation 
function g{r 12), may be expressed as a power series in 
cz(r), where c is the fractional impurity concentration 
and z(r) is the number of sites included within some 
radius r=Rc, where Rc is a correlation length to be 
defined later, and that g(ri2) decreases rapidly with the 
radius ru for cz(r 12) <^> 

Using the cluster expansion method to estimate the 
function g(ru) for r>Rc leads to serious difficulties, 
since in our approximation g(r 12) is zero for rn—Rc and 

8 A. W. Overhauser, Phys. Rev. Letters 3, 414 (1959). 
9 C. Herring (private communications from R. Brout, 1959). 
10 W. Marshall, Phys. Rev. 118, 1520 (1960). 
11 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 
12 T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956). 
13 K. Yosida, Phys. Rev. 106, 893 (1957). 
14 A. Blandin and J. Friedel, J. Phys. Radium 20, 160 (1959). 
15 P. W. Anderson (private communication through R. Brout 

and Bell Telephone Laboratories). 

increases proportionally to r3 for ru>Rc, thus increasing 
indefinitely with r, a result that is a physical absurdity. 
This difficulty is traced back to the fact that the part of 
the expansion of the partition function in a power series 
of the concentration which we have retained has a 
limited radius of convergence for long-range potentials. 
To find how the strength of the correlation varies for 
r>Rc, we solve for g(ru) by a completely different 
technique using a self-consistent method which can be 
linearized for large rn. This is done in Sec. 4.1. Upon 
extension of this solution to the region inside the correla­
tion radius Rc, we find that the two solutions for the 
inside and outside regions agree to within a few percent 
at ru=Rc- Thus, we get the important result that 
impurities are fully or partially correlated to the spin at 
the origin if they are located within some correlation 
radius Rc and are approximately randomly oriented if 
they are located outside of Rc. The field at the origin 
is, therefore, to a good approximation, the sum of two 
independent contributions, each of which has its own 
probability distribution. 

Using the corrected probability distribution to evalu­
ate the single-particle partition function, we not only 
get a much better agreement with the experimental 
specific heat data,15a but we are also able to derive 
the variation of the magnetic susceptibility with 
temperature. 

The idea involved in the latter is very simple in terms 
of the correlation length worked out in Sec. 3, and it 
involves something that might be termed a random 
antiferromagnet. The solid is made up of small clusters 
of impurities (on the average about 3.3) interacting with 
each other via the Ruderman-Kittel potential. At low 
temperatures, the spins within a cluster are strongly 
correlated to the spin at the origin and the impurities 
within a cluster act in unison to give an effective spin 
per particle which is smaller than the free ion spin. As 
the temperature is increased, two competing processes 
occur. One, the clusters are randomized resulting in a 
decrease in the susceptibility; two, the internal structure 
of the clusters breaks up thus increasing the effective 
spin per impurity and the susceptibility. At low tem­
peratures the second of these is predominant and be­
comes less important with increasing temperatures when 
most of the spins in a cluster (i.e., the internal degrees 
of freedom of the cluster) are already randomized. At 
very high temperatures all the spins act independently 
of each other and the susceptibility equals the para­
magnetic free gas susceptiblity. 

Next, we indicate qualitatively what concentrations 
are necessary for long-range order. It is found that no 
long-range order exists for concentrations of 0.05 to 5%, 
the concentrations treated in this paper. Finally, we 
discuss the validity of some of the approximations 
used in this work. 

15a Note added in proof. Since then one of us (M.W.K.) was able 
to show that the low-temperature specific heat of Cu-Co and 
Cu-Fe can also be explained using a Ruderman-Kittel interaction. 
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2. THE FIELD ABOUT AN IMPURITY FROM 
RANDOMLY ORIENTED SPINS 

As mentioned in the introduction, we investigate the 
thermodynamic functions of a sample containing dilute 
concentrations of magnetic impurities randomly dis­
tributed in a nonmagnetic host lattice where an indirect 
exchange interaction of the Ruderman-Kittel type is 
assumed to exist between the impurities. These func­
tions can be obtained by differentiating logZ with re­
spect to various parameters, where Z is the partition 
function for the system. 

£ = £ exp(-/33C) (2.1) 
all 

states 

and P=l/kBT, IZB is the Boltzmann factor, T is the 
temperature in degrees Kelvin, and 3C is the Hamiltonian 

3 C = E » W W . (2.2) 

Vij is the Ruderman-Kittel potential given by Yosida,13 

\n is the spin associated with an impurity at position riy 

and may take values of ± 1 in the Ising model. For con­
venience we deal with the Ising model rather than the 
presumably more correct isotropic Heisenberg model. In 
physical content the latter is different from the former 
in case it is possible to propagate spin waves. However, 
at low concentrations there is no long-range order and, 
therefore, spin waves are not possible. In this model 
Yosida's expression becomes 

/3n\ 2r 

t*Hs , | |Sy | ( - — U(o)J 
\N/EF 

2kpTij cos2£/prtf—sin2&jpftf 
X . (2.3) 

(n/N), EF, kF, and |5 t- | and 7(0) are the number of 
conduction electrons per atom, the Fermi energy, the 
Fermi wave vector, the magnitude of the impurity 
spins and the strength of the s-d interaction, respec­
tively. For Cu-Mn, the smallest value of 2kpry is 6.92. 
We thus drop the sin2£/?r# from (2.3) and we have the 
approximate expression 

v^ = a(coskrij/rijz), (2.4) 

where k = 2kF and a=24.8°K—d3, d is the dimensionless 
lattice constant for copper and r# is measured in units 
of the lattice constant. The value of a was calculated 
using J(0) from Refs. 2 and 13. In principle, we can ob­
tain the partition function by evaluating (2.1) directly, 
in all probability an impossible task. We therefore adopt 
the point of view expressed in the introduction and ap­
proach the problem in successive stages. We first ignore 
completely the spin-spin correlation that the interac­
tion (2.2) implies and examine the effective field distri­
bution in a purely random distribution of impurities 
with random spin orientations; i.e., pa—dtzl equally 

likely. Sections 3 and 4 are devoted to correcting this 
assumption. In the end, the qualitative results of the 
random calculation still survive in large measure. 

Proceeding with the random spin calculation, we 
first evaluate the probability distribution P(H) of the 
field H about an impurity and then calculate the mean 
free energy per particle according to 

\nZ(fi)=( P(B)\nZ(P,H)dH, (2.5) 
J —00 

where P(H) is the normalized probability distribution 
of the field. The method is then that of the molecular 
field where the molecular field is a random variable. 
Since there is no long-range order, the average field 
is zero. 

lnZ(/3,ff) = ln £ e - ^ = l n c o s h / 3 # + m 2 . (2.6) 

To find P(H) we use the so-called statistical model de­
veloped by Margenau16 and applied to dipole-dipole 
interactions by Anderson.15 

We consider a crystal having N impurities distributed 
on No sites such that N/NQ^C, where c is the fractional 
concentration. The position coordinate, r, of each im­
purity is an independent random variable uniformly 
distributed over the volume of the crystal V with 
probability 1/V. With each impurity i we have associ­
ated a random spin variable /x* which in the Ising model 
can take values of db 1 with a probability that generally 
is a function of the temperature. However, for the 
moment, we will assume the spins to be randomly 
oriented and proceed with the calculation. We define 
the field at impurity i to be 

Hi^J^VijfXj, (2.7) 
3 

and thus calculate the probability distribution of the 
field P(H) about an impurity i. Without going into 
details, we quote the results of Anderson15 as applied 
to our problem. 

P(H)=— / e-^dpl — E / e^Hh 
2-irJ-n L2V^±iJv J 

i r r Wc-f 
=,__ / e-iPHdp\ i 

271-7-00 L N J 

i /-00 

= — / e~4Vfce~^Hdp, (2.8) 

where c is the concentration, there are 4 sites per unit 
cell in an fee lattice, hence, the factor of 4 and 

4?r rMf ipacoskr}-] v'=vL L ' H — l h - (2-9) 
16 H. Margenau and W. Watson, Rev. Mod. Phys. 8, 22 (1936). 
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Replacing the value of a coskr in the integrand by some 
average value, a, to be determined later and substituting 
the result of (2.9) in (2.8) gives 

1 r00 

P(H) = — / exp(-ipH) exp[-(167r/3)ca\p\2dp 
2ir J-oo 

1 Ho 
= , (2.10) 

irH0
2+H2 

where H0= (I6ir2/6)ca. We note the important result 
that the width of the Lorentzian is proportional to the 
concentration in agreement with the qualitative argu­
ments of Marshall. 

In deriving Eq. (2.8) it was assumed that the im­
purities could take up a continuous range of distances 
from the one located at the origin. This assumption 
leads to the wrong conclusion that none of the moments 
of the distribution function (2.10) exist. This is not the 
case because the lattice is discrete, the most important 
consequence of this is that there is a finite "minimum 
distance" between the impurities resulting in a cutoff 
of the wings of the distribution function. Again, follow­
ing Anderson, we may idealize the minimum distance 
problem by letting the distribution of the impurity 
distances be continuous, but place upon it the limitation 
that two impurities cannot approach closer than a 
minimum distance ro, where r0 will be determined later. 
Thus, the maximum field from a single impurity is 
given by (a coskro)/(r0

3) where a is the strength of the 
potential. 

All previous equations remain valid, except (2.9) 
which we modify by excluding the volume close to the 
origin. The expression for V in Eq. (2.9) becomes 

4T r^r pan 4T 
V' = — / 1-cos— \r2dr= —pa<p(Q), (2.11) 

V JrQ L r3J 3 

where Q= (pa/rQ
z) and 

cosQ— 1 rQsmQ0 

^(0) = + / dQ0. (2.12) 
Q Jo Qo 

We see that the shape of the distribution function is 
still not easily obtained and (2.8) must be done by 
using approximations on (2.12). We let 

<P(Q)^Q; Q<h, (213) 

v(Q)=h*-(VQ)i Q>br. 
A graphical comparison of the approximation (2.13) 
with the function <p(Q) shows very good agreement be­
tween the two. Using (2.13) and (2.11) in (2.8) gives 

r0
z [l™ / Hr0* x2\ 

P(H) = / dx expf — ix J 
2irsa J -ins \ as 2 / 

r0
3 r°° rHr0*x-\ r2 n 

H / dx cos exp -T-x , (2.14) 
irYa ./(37r/4)r L Ts J \-ic J 

where ^=[(167r/3)(cf0
3)]1/2 and T = (8TT 2 / 3 ) (^ 0

3 ) . The 
parameters r0 and a still remain to be determined. At 
this point we choose a cutoff radius ro which is de­
termined by our subsequent statistical argument. We 
will show in Sec. 4 that the proper r0 to be used in (2.14) 
is given by fo=.#c=0.514c~*d, where d is the dimen-
sionless lattice constant and Rc is a correlation length 
to be derived later. With this value of r0 the limits on 
both integrals become independent of the concentration, 
f7ns=3.54, and the second integral in (2.14) contributes 
less than exp (—5.6). The probability distribution 
becomes 

P(H)^(2Ta2)-^2 e x p [ - K # 2 A 2 ) ] , (2.15) 

with (T= [167r/3(cro3)]1/2£a. Equation (2.15) is the central 
result of this section. The probability distribution is a 
Gaussian with width proportional to the concentration 
and the essential point of Herring and Marshall that 
P(H=0)cc l/c is maintained. I t remains to discuss the 
value of a which is the average value of acoskr in 
Eq. (2.9). If the cosine is expanded in (2.9) and we 
integrate from r0 to oo, we find that convergence is good 
and a—a/^/2 is then a good approximation. 

We now make a rough calculation of the low-tem­
perature specific heat from a set of randomly oriented 
impurities whose probability distribution and width is 
given by (2.15). 

1 Noc d2 rw 

Cv = / P(H)\nZ((3,H)dH 
2kBT2dt3*J^ 

Noc r 
= / H2dHsech2pH 

2(2^2kBT2a J-oo 
Xexpf 1 , (2.16) 

L 2o-2J 

where lnZ(l3,H) is given by (2.6) and the factor of J 
arises from the self-consistent field calculation. We 
evaluate (2.16) for the case of /3^>l/a using an asymp­
totic expansion. The specific heat is approximately 
(Cv/T) = 1.7X10-2 J/mole-deg. We thus find that the 
specific heat goes linearly with temperature, is inde­
pendent of the concentration, and Cv/T has an intercept 
of 1.7X10-2 J or approximately three times the experi­
mental result. At this point we should recall that except 
for the cutoff r0 we have neglected correlations between 
the impurities. We will find that by including the effect 
of correlation not only do we get closer agreement 
between the theoretical and experimental specific heats 
but also obtain the magnetic properties of the system. 

3. THE TWO-PARTICLE CORRELATION FUNCTION: 
CLUSTER METHOD 

We wish to expand the free energy of a system of 
randomly distributed impurities in a power series of the 
impurity concentration. We associate with each im­
purity j two random variables, the position coordinates 
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FIG. 1. (a) Diagrams contributing to the third semi-invariant, (b) 
Rings of ladders arising from the 4 vertex 5 ladder diagram. 

Yj and the spin iij. To obtain the free energy, averages 
are performed over spin as well as spatial configurations, 
and care has to be exercised in the order of which these 
averages are performed. We are interested in a random 
sample with frozen-in spatial configurations; i.e., in a 
specific nonequilibrium situation. It is desired first to 
calculate the spin sum in the partition function (since 
the spin system is assumed to be in thermal equilibrium) 
and then average the logarithm of this quantity over all 
random spatial configurations. In short, we must calcu­
late the mean free energy averaged over configuration 
space. The importance of this point is discussed in a 
previous article by one of us,17 henceforth called Ref. B, 
to which we refer the reader. We will use the cluster 
method of B to evaluate the two-particle correlation 
function. The important physical effect which we are 
evaluating is the effect of the screening out of the field of 
one spin on another by intermediary spins. 

In the notation of B 

(ln(Z),.)c=(ln(exp[—fi £ ^ A W ] > S ) C 
i<3 

= E Mninj-m), (3.1) 
n<l fll 

where s and c stand for spin and configurational averages. 

Upon a diagrammatic expansion of (3.1) we find that 
the nth semi-invariant contains all possible diagrams 
that can be formed from n bonds, each bond having a 
strength of vy and a spin in and /zy associated with its 
two ends. Thus, the diagrams contained in the third 
semi-invariant are shown in Fig. 1. 

We now wish to sum the diagrams according to a 
power series in the concentration and perform the spin 
averages for the case when no long-range order exists; 
i.e., the long-range order parameter R=(IJL) = 0. We will 
show later that no long-range magnetic order is expected 
to exist for the dilute impurity concentrations considered 
in this paper. We should also note that in the Ising 
model, the model considered here, (/z;2H_1)= (ni)—0, and 
{^i2l)= (vi2)^ 1 whenever I is an integer. 

We write 

£ - i W z = <ln<exp[-j8 E W y ] ) . ) c , (3.2) 
Z=2 %<j 

where Fi is the free energy per particle from all I vertex 
diagrams. Since (/x)=0, only irreducible diagrams (and 
excluded volume diagrams to be discussed later) survive 
in the spin averaging process. — /3F2 for 1=2 is obtained 
from Eq. (35) Ref. 17 and is 

-PF%=- E In c o s h O f o ) ] , (3.3) 
2 i 

where i is taken with respect to some arbitrary origin. 
We now define a "ladder bond" to be a bond containing 
the sum of any number of vy interactions between two 
fixed vertices. The contribution to — /3Fn from the 
^-vertex irreducibly linked diagram containing I ladder 
bonds is derived in Appendix 1 and is given by 

-i8Fn=(iVV^0(ln(exp[--^7MiMy+^WMA;H Mn<M«M.-)]>.>c-( Vln<exp[-j8( £ viS)J)s)c 
bonds 

+ ( 2 ) exp [ - / 5 J 2 »«]>.>.+ • • • + ( - l ) - 1 ( Vexp(-/S.„/*w)),>e. (3.4) 

bonds 

The meaning of (3.4) is the following. The contribution to — pFn from an n vertex diagram containing Madder 
bonds is given by the semi-invariant of the sum of all I bonds taken at a time, minus all the semi-invariants formed 
by erasing one ladder bond at a time, plus all the semi-invariants formed by erasing two ladder bonds at a time, 
and so on, the last term giving all I semi-invariants only with a single-ladder bond. Equation (3.4) is evaluated in 
Appendix 1 for the case when (/*»•)=0 giving the result 

-pFn~-
Nn-

( E ln[l+ E (~l)m I I (tanh/3W+1)])c 
n! all sets that 

have rings 
rings in 

the diagram 
over ra-bonds 

in a ring 

(3.5) 

where by the sets that have rings we mean all diagrams that close upon themselves; the latter we call ring diagrams. 
The following example will clarify the point. Consider the diagram with 5 ladder bonds as shown in Fig. 1(b). The 
ring diagrams arising here have bonds 125, 345, and 1234; i.e., those bonds that close upon themselves. 

When any vertex is connected to only two other vertices (no cross diagrams), the contributions from all but one 
17 R. Brout, Phys. Rev. 115, 824 (1959) (referred to as B throughout the article). 
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term in (3.5) vanish and the free energy from the ^-vertex rings of ladder diagram becomes 

Nn 

-f$Fn=—Gn(ln[l+(-l)- n tanh/^7])c, (3.6) 
ft! ra-bonds 

in ring 

where Gn gives the number of topologically distinct diagrams; 

Gn=h(n-l)l, 
where m labels the bonds in the ring. 

We now show on the basis of the previous paragraph together with the self-consistent method of Sec. 4 that at 
zero-degrees temperature and for low-impurity concentrations (c<0.05) the volume of the crystal about a fixed 
impurity, i, may be divided into two regions, henceforth, called regions 1 and 2. 

Region 1: The volume within some correlation radius Rc, to be defined shortly, from an impurity i fixed at the 
origin in which a site occupied by an impurity j is strongly correlated to spin i. The strength of the correlation 
depends upon the distance u$ between spins i and j . Rc itself will be a function of the impurity concentration 
and temperature. 

Region 2: The volume of the crystal for nj>Rc in which spins i and j will be only weakly correlated. 
In order to show the above we examine the two-particle spin correlation function between two impurities i and j 

located at a distance r# from each other. We obtain the correlation function from Eq. (3.2) 

( M W ) = ( ln(exp(-0 E Vijixitxj))* Y , (3.7) 

where we should note that the summation over i and j is omitted in the configurational average of (3.7). 
Let {fallal be the contribution to (M*M/) from a general I vertex diagram and let (juj/iy}jring be the contribution 

to (fiifij) from the /-vertex ring diagrams. 
Note: In all subsequent discussion, unless explicitly stated otherwise, we fix impurity i at the origin with spin 

up and j occupied with unspecified spin orientation, or 

<MoMi)̂ (MOMJI/xogiven = + 1 > and site j occupied. (3.8) 

We thus get for the two vertex diagrams 
W;)2= — tanh#>(r0/). (3.9) 

The physical meaning of Eq. (3.9) is the following. If we consider the two-particle interaction only, i.e., the first 
term of the power series expansion of the free energy, we get the result that, at T=0, the magnitude of the correla­
tion between /x0 and any other spin /xy will be unity. However, we expect that a third particle located between MO 
and JJLJ will screen some of the effect of /xo on juy. To find the effect of one or more intermediate particles between 
spins JJLO and /xy, we first consider the contribution to (non/) from a general ring of ladders, the equation for which is 
given by (3.6) and will treat the nonring contributions later. 

Rewriting Eq. (3.6) gives 

1 
- /3iV i n g=— {c)n~l E m [ l + ( - l ) » tanh/^,12 tan0v*fty • •]> (3.10) 

2fl i2,i2,"-in 

where each 4 takes values from one to iVo, where iVo is the number of sites in the crystal. Differentiating (3.10) 
with respect to — §£i># 

( M « ) / m g = - ^ 2 E ; -fci*., (3.11) 
is-"in l + (— l)n/tW»2*V * 'knh ^L2^hi2j 

where 
W i = tenitfvikik+i > (3.12) 

and we eliminated the factor \fn in (3.12) by differentiating with respect to each of the n random variables 
occurring in the expansion. There will be no loss of generality by letting v02 be positive. Thus, we get 

W 2 ) f 4 e n ( o d d = ^ 4 C ^ £ [ ( ^ 2 , y . . / < w o ) - 1 ± l ] - 1 C ^ ^ - ^ , ' » 3 - 1 ( 3 . 1 3 ) 
%Z'''in 

where the upper and lower sign belongs to the ^=even and ^=odd cases, respectively. In the lim/3—» oo we 
make the following observations. 
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Consider the right-hand side of the summation in Eq. (3.13). The factor (e2PV02—e~2fiv°*)~~1 approaches zero as 
P —> oo. Thus, we get a contribution to (ju0M2)fcring only when the first factor approaches infinity as fi —» <x>. We 
now observe that in order to get a contribution to (3.13) 

(*02fe*v * * fcno) > — 1 w= even, (3.14) 

( « 2 V ^ « o ) > + l ^ = o d d . (3.15) 

Thus, even vertex diagrams contribute only when an odd number of bonds are negative; odd vertex diagrams, 
when an even number of bonds are negative. Thus, as f$ —> °° we get 

W 2 ) , r i n g = H m [ 2 ^ - 2 E ( 1 + E exp[+2 /? ( | z ;o2 | - | ^ f c + i l ) ] ) - 1 ] (3.16) 
/3->oo iz---in k = 2 , 3 - • -n 

with the proviso that even vertex diagrams have an odd number of negative bonds while odd vertex diagrams have 
an even number of negative bonds. Equation (3.16) contains the screening behavior of the correlation function 
which we have sought. We find that in the limit as (3 —> oo whenever Ifl^+il < | 0̂21 (3.16) gives no contribution 
to (M0M2); when | 0̂2 [ < K W H I for all (k, k+1) the summation increases by unity. For the case when some of the 
potentials | vikik+l | are equal to each other and some others are greater than | VQ2 | , the contribution to the summation 
in (3.16) varies between 1 and 1/n. We note, however, that the probability for several of the potentials to have the 
same value decreases rapidly with decreasing concentration. Thus, each summation contributes approximately z, 
where z is the number of sites within a volume of radius r02> We can now describe the behavior of (MOM;) from both 
the simple ladders and the rings of ladders. With spin j fixed and occupied the contribution (3.9) is just — 1 , while 
let the ^-vertex ring of ladders contribute an(cz)n~2. The total contribution from these two classes of diagrams is 

( / xoMi)=l im[- tanh^ 0 2+2 £ c"~2 £ ( 1 + E exp[20(|t>0y| - K ^ i l ) ] ) - 1 ] (3.17) 
0-*oo n = 3 13- "in &—2,.-.n 

= - l + 2 Z a „ W » - ! , (3.18) 
w=3 

where an is of order unity. The correlation between the 
spin at the origin and spin j will vanish whenever (3.18) 
becomes zero indicating a breakdown of the approxima­
tions used, a difficulty which we will discuss later. 

Let site j be a near neighbor, then z will be of the 
order of 10, and for low concentrations two near-
neighbor spins will be almost completely correlated; 
i.e., \(HQ!XJ)\ = 1. As r02 increases, so does z until cz is 
large enough for (3.18) to vanish. The radius at which 
this occurs we define as the correlation radius Rc already 
mentioned several times. Since cz, and not z, is the 
quantity that determines the correlation length, Rc is 
a function of the concentration as discussed previously. 

We have introduced the ring of ladders for two 
reasons: One, that the ring of ladders very clearly 
demonstrate the qualitative behavior of the correlation 
length; two, it becomes very laborious to evaluate the 
sum of all irreducibly linked diagrams for n>4. How­
ever, we still would like to consider the effect of all 
irreducibly linked diagrams. Therefore, we use the 
following approximation. We evalute the 4th virial 
coefficient (4-vertex diagram) exactly, and compare it 
to the four-vertex ring of ladders; then using the infor­
mation obtained from this, predict the qualitative 
behavior of the higher virial coefficients from the ring 
of ladder diagrams. 

The contribution to the two-particle spin correlation 

function from the fourth virial coefficient is evaluated 
in Appendix 2 in the limit /5 —> 00. The result is 

(/zoMy)4~2c2 E 1. 
*»•** (3.19) 

The summation in (3.19) is subject to the condition that 
each of the six interactions arising in the 4th virial 
coefficient be equal to or be stronger than v0j. Again, 
there is a constraint on the sign of the bonds such that, 
on the average, only half of the diagrams contribute. 
We note that, except for the restriction that none of the 
four vertices may be separated by a distance greater 
than ro2, the complete 4th virial coefficient gives the 
same result as the four vertex ring of ladders. For the 
ring of ladders, only the four external bonds have to be 
shorter than r02. Because of the additional restriction, 
it would appear that the contribution of (3.19) to 
(/xoAty)4 is smaller than the ring contribution, but this is 
not so. The rings are restricted to diagrams with non-
crossing paths, whereas crossings are permitted in the 
complete four-vertex diagram, and there are many more 
crossing than noncrossing distinct paths on the four-
vertex diagram, particularly for low concentrations. 

The authors are of the opinion that for the higher 
virial coefficient the rings of ladder result is correct for 
cz<l provided we impose the restriction that none of 
the vertices in the diagram are separated by a greater 
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distance than r02. This conjecture is based on the detailed 
examination of the complete 4th virial coefficient in 
Ref. 18. I t is seen there that for every bond i-k in a 
diagram, a factor XtV%>2 = exp[j3(|flo2| — K ^ l ) ] arises 
in the denominator of (MOMJ) and, thus, (MOMJ) vanishes 
unless the strength of each bond Vik is stronger than u02. 
I t is therefore indicated, but not proved, that the same 
type of terms (exp[j3{ | ẑ 021 — 1^1}]), arise from each 
bond in the complete nth virial coefficient when n>5. 
Also, it will be shown that the correlation function 
(noHj) is insensitive to the contributions from virial 
coefficients higher than the fourth in the region where 
the correlation is strong. Thus, little error is made if 
higher virial coefficients are not evaluted exactly. 

We are now ready to find the total contribution to 
(3.18). The contribution from the three-vertex ring is 
calculated as follows. We fix a spin at the origin 0 and 
another spin at a distance r02 from it. Select the third 
vertex such that the length of each bond is not greater 
than r02. We are then restricted to the truncated portion 
of the sphere whose volume, r3, is T3=2(5/24)7JTO23 . Let 
z be the total number of sites within r3, then the con­
tribution of the three vertex diagram to (3.18) is 
(noVj)z~2(%)(cz) where the factor of J comes from the 
restriction on the sign of the bonds [see discussion 
following (3.15)]. Next consider the contribution from 
a higher-order diagram, and, in particular, the case 
where the number of vertices becomes large (of order 
15 or greater). After r02 is fixed, the next vertex may be 
chosen anywhere in the volume r3. However, any sub­
sequent vertex will be restricted to a volume f7r(r02/2)3 

= e7r^023, and the total number of sites within this 
volume is approximately \z. Then the contribution 
from the n vertex diagram is 

W y > n = ^ [ f c ( 2 - l ) ] [ f c ( 2 ; - 2 ) ] - "Bc(z~n)2; 
n<&>. (3.20) 

Substituting (3.20) in (3.18) yields 

s CZ 

0 W « - 1 + ( « ) £ [*(«)]»« - 1 + — — • (3.21) 
n=0 1 — fCZ 

In the present approximation we choose to define the 
correlation radius Rc as that radius where {MHJ) = 0. 
Later we will show that this choice of Rc is compatible 
with the self-consistent linearized theory which is valid 
for the "tail" of the correlation functions. Setting 
{fjLofjLj) = 0 yields the solution (as) = 0.71. The number of 
impurities within Rc is (cz)(%TrR*)/[_($/l2)TrRc

z~] = 221 
and, thus, 

Re=0.514^^, (3.22) 

where d is the lattice constant. 
That one may have confidence in the estimate (3.22) 

follows from the small contribution of the virial coeffi­
cients for n>5 where our calculation is most liable to 
error. To see this, we evaluate the contribution of F5 to 
(/xoMy), where F5 is the 5th virial coefficient. 

The third and fourth virial coefficients contribute 
approximately cz-\-\(cz)2, the fifth contributes cz[j(cz)]2, 
the ratio is 

VB CZ(\CZ)2 ( 4 / 2 5 ) M 2 

« ~ «6.2%. 
V3+V4 1+fM2 l+i(cz) 

The reasonably small contribution in the fifth virial 
coefficient to the two-particle correlation function 
clearly exhibits the self-consistency of the whole ap­
proach to the inside region. This is also seen from the 
following. We have found that, on the average, there 
are about two impurities (2.27 to be exact) plus the 
one at the origin within the correlation length. This 
shows that two intermediate impurities between a 
particle located at the edge of the correlation length and 
the one at the origin are sufficient to destroy the correla­
tion. Thus, contributions from higher virial coefficients 
having more than four vertices, determined by the 
location of the four particles, are unimportant. The 
correlation function (juoM2) = g(ri2) as a function of r/Rc 

is approximated by 

*('«) = [ l - (W*c) 3 ] sgnM , (3.23) 

where sgn^02= + l when v02 is positive and (—1) when 
fl02 is negative. 

Up to now we have considered the situation in which 
the number of sites enclosed within the range of correla­
tion is less than 1/c. However, if we choose an impurity 
at a radius r02 such that the number of sites enclosed 
within the range of correlation is greater than 1/c, the 
terms contributing to the summation in (3.18) become 
greater than unity and g(r 12) increases indefinitely. This 
is a physical absurdity. The difficulty appears to be 
even more serious if we consider that the validity of 
Sec. 3, which is of central importance in explaining the 
thermodynamic functions of the system, hinges upon 
the fact that g{r 12) vanishes for large r i2. However, it is 
for these large radii that our series evaluation of g(ru) 
breaks down completely. The difficulty is traced to the 
fact that in the limit fi —•» <*> the part of the free energy 
from ti2> Rc yields a power series in the concentration 
which appears to diverge. I t is probable, however, that 
excluded Volume effects which we have not included 
will eliminate the divergence. Rather than pursue the 
cluster approach at large distances, we have adopted a 
self-consistent method for r>Rc, and match this solu­
tion with that of the inside region, a region for which the 
results obtained in this section are presumably valid. 

Before completing this section we now briefly digress 
to the question of the excluded volume effects mentioned 
previously. In Ref. 17 it was shown that dotted line 
diagrams arise from the constraint that no multiple 
occupancy of sites is permitted. Hence, by summing 
over unrestricted intermediate indices, we have over­
counted the contribution to the free energy and must 
subtract out such extra terms. The important point is 
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that each dotted line diagram introduces a — S*y in 
coordinate space and reduces the contribution by 1/z 
where z is the effective number of sites within the range 
of correlation and z=0(2/c). Thus, the dotted line 
contribution will become important only for diagrams 
with a large number of vertices, where the number of 
dotted lines in a graph increased very rapidly. We may 
conjecture that these dotted line diagrams make the 
total free energy convergent. 

4.1 Self-Consistent Solution of the Field 
for the Outside Region 

We found in the previous section that the approxi­
mate value of the two-particle correlation function goes 
to zero at r=Rc which indicates a mathematical diffi­
culty in our method of approach. We now find the 
two-particle correlation function for r>Rc by a self-
consistent method. This approach will be very useful 
in the treatment of the problem of the threshold con­
centration to maintain long-range order. We assume 
that the probability distribution of the field is simple 
enough, so that it can be specified by two parameters, 
the mean field H which is not zero since in finding the 
correlation function we will fix a spin to be say + 1 at 
the origin, and the dispersion o-2=(fl2)—(fl)2. Since we 
are interested in long-distance correlations, most spins 
entering into this calculation are for large values of r0y. 
For asymptotically large r0y, it is sufficient to describe 
all of these spins by the same single-particle distribution 
function and, hence, the same a. The dispersion a is 
given by Eq. (2.15). 

In the Ising model we may have spin orientations of 
± 1 . We perform the self-consistent field calculation at 
T = 0 when a spin will be oriented up if the field is 
positive and down if it is negative. Let p(Hj) be the 
probability distribution of the field at spin /xy and let 
p^ be the total probability that the field at w is up 
( + ) or down (•—), 

W i > = / Jr^{Hj)p{H3)dHj 
J —00 

/

0 /.oo 

( - \)p{H])dHj+ / (+l)p(Hi)dHi 
-oo J0 -Pi+-pr^K(H3)/*']. (4.1) 

We can get an idea of the behavior of /C(fly)/cr] as 
follows: For an impurity j very close to the origin we 
will have |(fly)|»o- and /[(fly)/o-] will be ± 1 depend­
ing upon whether v0j is negative or positive. For an 
impurity j far from the origin | (fly) | < a and we may 
linearize f\JJH,)/<f\ to be approximately (Hj)/<r. Thus, 
f[_{Hj)/(x] has the form shown in Fig. 2. With this 
introduction we are ready to find the self-consistent 
field for the outside region, using the information ob­
tained about the inside region in Sec. 3. The trick is to 

i^) + i 

Linear Portion 

<Hj> 

FIG. 2. The form 
of /«£»/«r) as a 
function of (Hj)/<r. 

average over an ensemble of systems in which an im­
purity with spin up is located at the origin and site j is 
definitely occupied with unspecified spin direction, j is 
taken to be asymptotically far from the origin. Using 
the relation pj++pj~= 1, we get 

# t = i ( l ± W ; » - (4.2) 

The average field at impurity j is defined by 

(Hj) = v0j+c X vskfaoVk), (4.3) 
h 

where the average is performed over an ensemble of 
systems in which the spin at the origin is up and spin 
j is occupied with unspecified orientation. Thus, 

W * ) = Pj+fk++Prfk~, 

fk±= fi(v0k±Vjk+c X* n&wif)/*] • (4.4) 

Using (4.4) in (4.2) gives 

(Hj) = voj+- X i iy*{( /* + +/ ib- )+Wi>[ /* + - /* - ]> • 
2 k 

(4.5) 

Since two impurities will be strongly correlated only if 
they are within a correlation distance Rc from each 
other, it is convenient to separate the summation over 
k into three parts: part A, when fih<Rc\ part B, when 
rok<Rc; part C, the rest of the crystal. 

For the case when rjk<Rc a spin k close to j is 
strongly coupled to j and weakly to all other spins; thus, 

/ f c ^ i ^ y M * ) ^ —lim-
6MnZ 

/3->oo d[iPVjkli 

and /fc+~ — fk~. Using this expression for fk in (4.4) gives 

(fly) = Voj+c(fXolXj) X) | tyk | | (f*/MJb) i 

+- E »/*</*++/*-+W/>(/*+-/*-)>. (4-6) 
2 rjk<Rc 

Now we make the observation that 

X Kft| |</*yjUJb}|«—E 
rjh<Rc 

where — E is the energy per particle. Furthermore, since 
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r0j2>Rc, by hypothesis, | (now)|<3Cl and, hence, we 
will be in the linear region of the function / . Thus, 
(now)= (Hj)/<r. We also note that the other terms con­
taining (now) on the right-hand side of (4.6) have a 
value much smaller than E and, hence, can be neglected. 
Thus, we lump these three terms together and transpose 
to the left to get 

« '{,+7] : " E ^3k{fk++fk~}+Voj. 
2 rjk<Rc 

When k is in region B, fk
+ and fk~ are again determined 

by the strength of the interaction vok, and again 
/fc+— —fk~. The contribution over this domain vanishes 
on the average. 

The remaining task is to evaluate the sum in (4.7) in 
region C (far from site 0 and j). We linearize (4.4) and 
get /»++/*-«2((Hk)/a), 

<ff y )=( l+—) [voi+c E vjk(Hk)-]. (4.8) 
\ (X / rjk<Rc 

We assume for the moment that the second term 
on the right-hand side of (4.8) is negligible. This 
is valid for small c as shown below. We then get 
(Hj)c^(l-\-cE/a)~1vo3\ Using this relation in (4.8) gives 

(B Hl+7) V0J+* 

c I 
N E VjkVOk 

rjk >Rc 
no >Rc 

(4.9) 

Consider the second term on the right hand of (4.9). 
Since fjk and rk0 are random variables, Vjk and vk0 are 
likely to be negative as positive, this second term is 
negligible in the absence of long-range order [also note 
that this term is of 0(c2) compared to v0i]. Thus 
(now)^Lvoj/((r-\-cE)~} where a is given by Eq. (2.15). 

We now evaluate the strength of the correlation (now) 
at r=Rc. Using (3.22) and the expression for a, we 
sum E for the first two shells about the impurity at the 
origin and integrate from there to Rc. This gives 

[<MW>]r-«e=0.0942[l-ft(c)], (4.10) 

where b(c) is a number that decreases with concentra­
tion, b(c)^0 for c=0.05, 6(c) = 0.15 for c=0.005, and 
b(c)—>l in the limit as c —> 0. Now we compare the 
self-consistent solution of the correlation function from 
the outside region with the result obtained from the 
inside region. The solution from the inside region gives 
the result that a spin nRcJ located at Rc ,is just as likely 
to be up as down; whereas the outside region gives the 
result that the probability is approximately 54% that 
nRe is up (in case the potential is negative) and 46% that 
it is down. For spins located at r>Rc the probability 
^{Atr±}~J±0.04(jRcA)3. It is gratifying that the self-
consistent method gives a very small correlation at Rc? 

as predicted from the cluster development. Still, we 
should get a qualitative estimate of the correction intro­
duced due to the slight correlation at r>Rc. This is 
done in Appendix 3 of Ref. 18, where it is shown that 4% 
correlation dXr=Rc shifts the center of the distribution 
function from # = 0 to H—0.04H0, but otherwise 
everything goes through as before. 

(47) 4.2 Probability Distribution of the Total Field 

In Sec. 4.1 we have shown that, at zero degrees 
Kelvin, the field experienced by a spin at the origin is 
given by the contribution from two approximately inde­
pendent regions. The region r>Rc from which the field 
is approximately a Gaussian and r<Rc for which we 
now obtain the probability distribution. 

The average number of impurities within the cor­
related region is given by %TRC

ZC=2.27. We observe the 
important result that the number of impurities within 
a correlated region is independent of the concentration. 
We now fix the number of sites, z, within the correlation 
radius to be 2.27/c and permit any number of impurities 
from zero to z to be located within the correlated volume. 
We let p(z,m) be the probability that m impurities are 
found on z sites. Thus, £(z,w)~e-2-27(2.27)m/^ 

Let zi be the number of sites on the ith shell from 
the origin (sites that are equidistant from the origin are 
defined to be in the same shell) and let the probability 
that an impurity within the z sites is on the ith shell by 
p(i), then p(i) = Zi/2zi. Let Hi be the field at the origin 
due to an impurity with specified spin orientation on 
the ith. shell. We restrict ourselves first to a single 
impurity within the correlation length. We observe that 
if the orientation of spin j is the same as the sign of 
^oy[sgn(fl0y)] spin j will contribute a positive field at 
the origin, whereas if spin j has orientation of 
— [sgn(floi)] it will contribute a negative field at the 
origin. Using (4.2) and the result (now)/^/(^~roj3/Rc

s) 
- sgn(voy) we obtainHi

±= ±a|cos&r* | /n3 with probability 

fc±=Hi±Ci-fr</iJc)8]}, 

when Ti<Rc 

ICOS&f; 
and H^—dza-

with probability ^± = J when^>i£c 

(4.11) 

For a single impurity within the correlation length there 
will be 2i discrete values of H for the field from the in­
side region, where i is the number of shells within the 
correlation length, and the probability P(Hi) that the 
field at the origin isfl^is given by piH^) = p(ii)t(ii) = biv 

When there are m impurities within the correlated 
volume, the probability that the field is E?=i Hin is in 

18 M. W. Klein, Ph.D, thesis, Cornell University, 1962 (un­
published), 
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FIG. 3. The histogram shows the 
probability distribution of the field 
from the "inside region" for a l.d% 
concentration of Mn in Cu. The 
smooth curve shows the probability 
distribution of the total field. P{H) is 
symmetric, because the spin at the 
origin is just as likely to be up as down. 

10 0 10 

H IN ° KELVIN 

the two-particle correlation approximation 

P(H=ZHJ=f[bin. 
n—l n—1 

With this introduction we are able to find the proba­
bility from the "inside region" for any given concen­
tration. We calculated the probabilities for a 1.8% 
concentration of manganese in copper, summed the 
probabilities for the field in each 1° K interval (the field 
is measured in units of fxH^ksT, where /x is taken to be 
unity) and obtained the histogram shown in Fig. 3. 

The probability distribution of the total field is given 
by the convolution of the distribution from the inside 
region with that from the outside region given by 
Eq. (2.15). We thus obtain 

E expC-K^-^wJ2] 
Xp(z9m)bhbh- • -bJm. (4.12) 

P(H) = l27T(T2'Jr1^ 

Equation (4.12) was evaluated with the help of a com­
puter for a 1.8% concentration and the probability 
distribution obtained is shown by the smooth curve in 
Fig. 3. We find that for a 1.8% concentration of 
manganese in copper 

P(H=0); ••{2ircj)-1^ (0.25); (4.13) 

where a is given by Eq. (2.15). Thus, the qualitative 
arguments of Herring and Marshall that P(H=0) is 
inversely proportional to the concentration is confirmed 
by our more precise calculation. I t is also interesting to 
note that there is a slight dip in the distribution function 
about H=0 in agreement with the qualitative argument 
of Marshall on the shape of the distribution function. 

At this point we digress to make an interesting remark 
about the probability that the field is zero; i.e., P(H= 0). 
Using Eq. (2.10) and convolving it^with the probability 

distribution for the inside region given by Fig. 3 gives 
that 

P ( # = 0 ) = 0.52/A, A=fx2ca. 

The ratio, of P(H=0) with a cutoff of the field at the 
correlation length to that with no cutoff is 0.77 showing 
that the probability that H=0 is not very sensitive to 
the cut-off radius. We expect this from the consideration 
that the distant spins contribute primarily small fields. 

5. THE SPECIFIC HEAT AND MAGNETIZATION 

We calculate the correction to the low-temperature 
specific heat from the effect of the spin correlations. 
The specific heat may be found using (2.16) and (4.12). 
Again we evaluate Cv using an asymptotic expansion 
of (2.16) and we get for the T= 0 intercept of the specific 
heat, limr->oCVr=4.3(10~3) J/mole-deg in agreement 
with experimental results. 

Next we find the magnetization as a function of tem­
perature and compare with the results of Owen et at.2 

and Schmidt and Jacobs,4 who find that the magnetiza­
tion increases (nearly) linearly with the magnetic field 
and also increases with concentration and temperature 
at low temperature. The susceptibility goes through a 
maximum as a function of temperature and the suscepti­
bility maximum is approximately proportional to the 
concentration. The susceptibility maximum is now ex­
plained in terms of the correlated regions or "clusters" 
derived on the previous sections. The physical picture 
is as follows. At low temperatures, the spins within a 
cluster are strongly correlated to each other and the 
impurities within a cluster interact with the Ruderman-
Kittel potential and the effective spin per impurity is 
smaller than the free ion spin. As the temperature is 
increased, two competing processes occur; one, the 
clusters are randomized, resulting in a decrease in the 
susceptibility; two, the internal structure of the clusters 
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is breaking up, thus increasing the effective spin per 
impurity and the susceptibility. At low temperatures 
the second of these is predominant and becomes less 
important with increasing temperatures when most of 
the spins in a cluster are already randomized. At very 
high temperatures all spins act independently of each 
other and the susceptibility equals the paramagnetic 
free-gas susceptibility. 

At zero degrees the average spin at position r we 
found to be from (3.23); (HWJ)— (l — rz/Rc*) sgn^oy, where 
sgnvoj is the sign of VQJ. The magnitude of the correlation 
function depends upon the "screening" of the spins that 
are located between impurity j and the origin, and since 
these spins find themselves in a strong effective field, we 
assume that J(juoMy)| does not change appreciably as 
we depart slightly from T=0. However, the orientation 
of spin j close to edge of the correlation region will be 
strongly affected by temperature. We recall that the 
position of the spins is not affected by the minimization 
of the free energy, but their spin orientation is. Thus, 
when we depart from T=0, the spin average, in a Weiss 
field approximation, will be tanh^oj instead of sgnv0j. 
Thus, we let 

W 2 ) ) = ( l - W ) tanh^oy. (5.1) 

We now let the spins be uniformly distributed over 
the correlated volume with spin density p = (4/d3) • (2.3). 

Let the average spin per cluster be Mciav; 

Mciav= 1+1 f p(r)U-—) taubfiv(r)d*r\ 

r rRc / rz\ -p1 

xli. 'K ' -sH (5-2) 
and at r = 0 we get that 

( l - 2 . 3 / i ? c 2 ) > M c l - > ( l + 2 . 3 / i ? c
2 ) 

giving an average j*0i of about 1. 
The susceptibility, x, of an average cluster at tem­

perature T is given by 

x(T) = BpSol*(T), (5.3) 

where ^ = (iV0/3.3)c[(2)(5/2)]2 where f is the spin of 
the manganese atom. SC\2(T) is the number of free 
spins in a cluster. This is equal to the average spin of 
all clusters plus the difference in the number of spins 
that are correlated within a cluster at temperature 
zero and T. Thus, 

5cl
2=[^(o)-n(r)]+5cl

2(o) 

=Sd2(o)-
2.3 rRc 

f*/Rc*) 
(Rc*/6)j0 

X [1 - I tanhjSv(r) | ~]rHr, (5.4) 

where 59i2(0) is the average spin per particle at T—0. 

The value of 5ci
2(0) is calculated from the magnetiza­

tion data of Ref. 4, and is found to be approximately 
zero near r = 0 . n(0) and n(T) are the number of spins 
that are correlated within a cluster at temperatures 
zero and T, respectively. The factor (6/Rc

d) comes 
from the normalization of the spin density. In (5.4) we 
let (3v(r) = pa/r*, b=pa/Rc\ and differentiating (5.3) 
with respect to T and substituting (5.4) into (5.3) we 
get the condition for the maximum in the susceptibility, 

3T' 

Bb(3.3) 

3kT2 /K) 
f 1 — tanhz sech2z 1 

X <fesO. (5.5) 
{ z2 z \ 

Equation (5.5) has a solution when b is approximately 
0.3. Thus, we get that the temperature at which 
the susceptibility is a maximum is approximately 
r m a x =660c°K giving the values of 9.2 and 37°K for 
a 1.4 and 5.6% concentration, respectively. The experi­
mental values are 13 and 40 °K showing reasonable 
agreement between theory and experiment. (See con­
clusion for an additional discussion of this point.) 

Critical Concentration for Long Range Order 

We now wish to inquire at what impurity concentra­
tions, if any, long range order will be sustained through­
out the crystal. In particular, we want to show that the 
spin average (m) equals zero for concentrations treated 
in this paper. For this purpose the self-consistent field 
method gives an appropriate tool of analysis since, in 
its linearized form, one may look for singularities in the 
homogeneous part in the limit of r0j—> °°, such a 
singularity would indicate long-range order. Writing 
(4.3) in the form 

(Hk) 
(HJ) = VOJ+C E Vjk(vk)+c E vjk , (5.6) 

rjk<Rc rjk<Rc <T 

and transforming into crystal Fourier space and using 
the translation symmetry of v,-*., (5.6) becomes 

(H(q)) = v(q)+cF(q) + (c/cr)v(q)(H(q)), (5.7) 

where F(q) is the crystal Fourier sum of the second 
term in (5.6) and v(q) is the truncated Fourier sum 

0(g) = Z wfo*)expftq-ry*] (5.8) 
rjk<Rc 

and a is given in (2.15). Transposing and rearranging 
(5.7) gives 

1 — cv(q)/cr 1 — cv(q)/a 

I t is seen from (5.9) that, for a fixed correlation radius 
Rc, H(q) becomes infinite when cv(q)/a=l. This di­
vergence shows that a certain q component of # ? say 
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for q=qo, will be much greater than any other com­
ponent (in the final result the linear theory must be 
discarded and an ordered phase postulated and no actual 
divergence will arise). This indicates that a field with 
wavevector q will be observed throughout the volume 
of the crystal; i.e., the existence of long-range order with 
periodicity 2ir/qo in real space. Next we examine the 
function v{q) for Cu-Mn. We recall that the Fourier 
sum for v(q) is restricted to R>RC; therefore, for con­
centrations of the order of 0.15 or less, the lattice sites 
for R>RC are dense enough so that we may integrate 
(5.8). Using Eq. (2.3) we have 

(a) rT r2ir rQ 

k Jo Jo JR 

' kr coskr—sinkr 

Xe i q ' rr2 $mdddd$dr, (5.10) 

where a is the strength of the interaction and k = 2kF. 
Performing the integration we find the maximum value 
of v(q) to be 

v (q)max « v(0) = - 16wa (sinkRc/kRc). (5.11) 

Thus, [cv{q)/<f\<l for the concentrations treated in 
this paper, and no long-range order. We should note, 
however, that it is wrong to use (5.11) for concentrations 
that approach unity for two reasons. One, the lineariza­
tion procedure of Sec. 4 is no longer valid; two, the dis-
cretences of the lattice becomes important and the 
difference between the integral (5.10) and the discrete 
sum of the potential becomes large. Indeed, the integral 
of v(q) from r=0 to infinity differs in sign from the 
sum over discrete sites. 

DISCUSSION 

We briefly discuss the validity of some of the approxi­
mations used in this paper. In Sec. 4 it was assumed that 
the probability distribution of the outside and inside 
regions are independent of each other. This is actually 
not the case (even in the two-particle correlation ap­
proximation) for there is a slight correlation between 

the two regions at r=Rc. However, it is shown in 
Appendix 4 of Ref. 18 that this correlation only shifts 
the center of the distribution function slightly and 
effects the low-temperature specific heat very little. 

In calculating Tmax , the temperature at which the 
susceptibility is a maximum it was assumed that the 
average value of |cos2£/?r| is unity. This is not un­
reasonable in view of the fact that we are considering 
the strongly correlated inside region. If a spin at the 
edge of the correlation length is correlated to the origin, 
so will be a spin closer to the origin. The result for Tm&x 

may be off by at most a factor of the average value of 
| cos2kpr |, which is 2/V, and still remaining in reason­
able agreement with experiment. 

This model predicts that dilute substances of cobalt 
and nickel or other magnetic impurities should have a 
behavior similar to Cu-Mn. The question arises why 
Cu-Co should behave so differently from Cu-Mn. The 
low-temperature specific heat of Cu-Co was found by 
Crane and Zimmerman19 to vary linearly with tempera­
ture and proportional to the square of the concentration. 
However, if we use Overhauser's20 argument on the non-
localization of Co impurities in Cu, it may be that the 
Ruderman-Kittel potential is not effective in Cu-Co. 
This argument goes as follows: Since Co is two atomic 
numbers closer to Cu than Mn, it is expected that the d 
orbitals of Co in Cu are less localized than those of Mn in 
Cu. (Where the solute atomic number two units higher 
than Co, the d orbitals would be completely nonlocal-
ized.) Therefore, the orbitals of Co extend over a lattice 
constant or more, the periodicity of the Ruderman-
Kittel potential is of the lattice constant, and hence the 
average field over the Co orbital is cancelled out. 

ACKNOWLEDGMENTS 

We wish to thank Bruce W. Knight for making some 
valuable suggestions on the self-consistent field calcula­
tions. One of us (M. W. K.) also wishes to thank 
Dr. Marvin M. Antonoff for many useful discussions 
on the subject. 

APPENDIX 1 

In this appendix we prove two useful lemmas. First, we introduce some definitions. 
Definition 1: We define the subsets of a diagram as all possible subdiagrams formed by stripping it of one or 

more bonds. Example: The subsets of the three-vertex ring are shown in Fig. 4a. 
Definition 2: We define a skeleton diagram as one which contains none of its subsets except the identity. 
Statement of Lemma 1: The semi-invariant of a skeleton diagram is given by the semi-invariant containing all 

bonds in the skeleton diagram, minus the semi-invariants of all subsets formed by deleting an odd number, plus 
the semi-invariants of all subsets formed by deleting an even number of bonds in the skeleton diagram. 

Proof: Let Ylk VitViVj be the sum of all k bonds in the sleleton diagram. By the definition of the semi-invariant 
MnCLk VijfjLifjLj) contains the skeleton diagrams plus all its subsets. Therefore, 

Jtf^k vijmnj—][fn(k bond, skeleton)-f- ( V»c*-1 bond, skeleton) 

/k\ / k 
+ ( ]Mn & ~2 bond* skeleton) -] 1-
< : > ( V»a 

bond, skeleton) ( A l . l ) 

19 L. T. Crane and J. E. Zimmerman, Phys. Rev. 123, 113 (1961). 
20 A. W. Oberhauser, J. Phys. Chem. Solids 13, 71 (1960). 



S T A T I S T I C A L M E C H A N I C S OF D I L U T E C u M n 242S 

/k—l\ / k—l \ 
Mn

Zk-lviJfiifiJ=Mn^-'bond, skeleton)-J-( ^Mn^-1'1 bond, skeleton)-] \-l )Mntt bond, skeleton) (Al 2) 

V i / \k-i-iJ 
Adding all semi-invariants gives 

/k\ /k\ f/k\ /k\-\ 
I t t

2 i { » - Wn2fe-î MW-| h ( - l ) S ( jMJ*-' vWM=Mn(k bond, skeleton) + \ ( \—( J W[n {k—l bond, skeleton) 

+ ( l \ A r \ ) ^ ^ " 2 bond, skeleton)-) \-= Mn& bond, skeleton). ( A 1 . 3 ) 

This is exactly what we set out to prove. We should note that the proof is general and not restricted to rings of 
ladders only. 

Lemma 2: A k vertex skeleton diagram of ladders gives a contribution to the free energy 

Nk 

(ln<Zfc)5)c=— E (ln( I I ( l -^ M y tanh^ y ) ) s ) c (A1.4) 
k ! subsets bonds, subsets 

and when (JUZ-)=0, i.e., no long-range order, the contribution is 

Nk 

<In<Z*>.>c=— E < l n ( l + ( - l ) - I I tanh/^7))c, (A1.5) 
k! closed loops only closed loops 

where m is the number of bonds in the closed loop. In case there are no closed loops the contribution is zero. The 
closed loops of the 5 bond 4 vertex diagram is shown in Fig. 4(b). 

Using the definition of the semi-invariant 

Nk co 
(ln(Zk)s)c=— Z (-p)n(Mn(k bond, skeleton)/̂ !) , (A1.6) 

and Eq. (A1.3) we get 

Nk f fc-i/&\ 
(ln(Z,)s)c=— Z ( )(-l)*<m I I <rfiw').)c (A1.7) 

h\ l z=o \ / / k-i 
bonds 

Expanding the exponentials on resumming, each exponential becomes coshfivij—\H\XJ smhffvij, then factoring out 
a coshfivij from each exponential in (A1.7) we get 

Nk k-l /k\ Nk k-l /k\ 
<m<Z*>s>c=—£(-l)<( ) E ( l n c o s ^ ^ ) c + — E ( - l ) i <m< I I ( 1 ~ W tanh^,y))s)c. (A1.8) 

k\ 1=0 \l/k-l kl *=0 \ / / k-l bonds 

We now show that the first summation in (A1.8) equals zero. Let In cos/^#= Yi} then 

£ ( - "0£ F ,=0? F '-[0? r'-z r']+[(D? H* i')? r']+s{C)-(t!))?F< 
k-i r/k\ /k—i\~] *-i (&—i)! 

= £(-i)z ( )-( E F P E ^ E (-i)'=o-. 

This is exactly what we proposed to prove in Eq. (A1.4). Next we prove Eq. (A1.5). Consider the product 
(ILb bonds [1—ju»Mi tanh/3z^y])s in (A1.8). The spin average of mk equals 1 when k is even, and zero when k is odd. 
For this reason we get a contribution only when an even number of (ladder) bonds emanate from each vertex, 
i.e., whenever a closed loop is formed by the bonds thus giving (A1.5). 

file:///k-i-iJ
file:///h/xj
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APPENDIX 2 

Evaluation of the 4th Virial Coefficient 

The evaluation of the 4th virial coefficient becomes quite laborious algebraically; therefore, we use diagrams 
whenever possible. Every bond in the diagram is a ladder bond. The diagrams which contribute to the 4th virial 
coefficient F4 are shown in Fig. 5(a), where for each of the three diagrams A, B, and C, the semi-invariants of all 

(a) 

« *--5(T{*[>+-EI+*c|a} 
A B C 

A " * L+ A + A + / + V — (0 V4-Ji{M„Q-i2Mn y + 8 M n / \ } 

to) 0 —* 0 + n + l 7 + ZI M IJi Wk l{-$ *r-} * « • N X t̂ sl VA FIG. 4. (a) The 3-vertex ring and its subsets, (b) The closed - - - - - . . . . .. 
loops of the 5 bond 4 vertex ladder diagram. ' ' ' J J ' ' J 

FIG. 5. (a) Contributions to the 4th virial coefficient, (b) The 
net contribution to the 4th virial coefficient after the appropriate 
subsets have been subtracted, (c) The total contribution of the 
first term in Eq. A2.1. 

possible subsets are subtracted as discussed in Appendix 1, and /A = 3 ; / B = 6 ; / C = 1 . Subtracting the proper 
subsets of Vi we obtain a contribution as shown in Fig. 5(b). 

Using the definition of the semi-invariants (3.1) and letting tanh/3z^= Uj, and averaging over the spins with the 
condition (M*271+1)=(M*)=:0, (ju2n)=l, after performing some simple but laborious algebra we get 

N* 
F4=—{<In(l+3WyA**«^ , (A2.1) 

4! 

where again i, j are random variables ranging from 1 to N. Note: The first term of (A2.1) contains the diagrams 
shown in Fig. 5(c). The contribution of the fourth virial coefficient to the two-particle correlation functions is 
obtained by differentiating (A2.1) with respect to §j&>#. For convenience, we let /#= 1, ^&=2, tki=3, tu=4, ^ = 5 , 
tji=6j we thus get 

NA/r -[(1234)+(1356)+(2456)]+(126)+(145) (126) (145) -j 

4 \Ll+(1234)+(1356)+(2456)-(126)-(145)-(235)-(346) 1 —(126) 1-(145)J 

X| ] \ . (A2.2) 

In the limit as /? —•> <*>, ^nj—e-2^vi^ __+ ^ a n ( j g^^ 0f j-]^ terms in (A2.2) contributes only when its denominator 
vanishes. The reader is referred to Ref. 18 for the evaluation of (A2.2). The result is 

<MoMy>4=2<;2 £ 1. (A2.3) 
13, ii 

The summation is subject to the conditions discussed immediately following Eq. (3.19) in the text. 


